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ABSTRACT

A 4000 Hz vibration phenomena has been observed during the

test firings of several space shuttle main engines (SSME).

Experimental _studies of this phenomena suggest that the problem

might be associated with vortex shedding from the vanes within

the LOX tee manifold. The objective of this study was to

determine the unsteady, %_:_ee= ens_iona_l_ flow associated with

these vanes by computational methods to identify and better

understand the 4000 Hz vibration phenomena. A flow solver, FDNS,

for the turbulent conservation equations was validated for

predicting high_requency vortex dynamics and used to predict 2-D

e_me,_i_l and 3_e_s_i_a_l_flows within the LOX tee. 4000 Hz

excitation oscillations were predicted for some flows and the

entire 3-di4m_s_',_a-i flow structure was predicted for LOX tee

flow. The complexity of the flow was revealed by this analysis,

and computational methods for predicting these high frequency

oscillations in future engine systems were established.
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INTRODUCTION

A 4000 Hz vibration phenomenon has been observed during the

test firings of several space shuttle main engines (SSME). The

phenomenon is manifested by high acceleration levels in the

longitudinal direction at the gimbal block location, as shown in

Fig. 1 for engine 2025 (Ref. i). Data from engine accelerometers

indicate that the vibration is isolated to the gimbal block and

main injector head. The LOX manifold for the main injector head

consists of a "hot dog" shaped inlet tee as shown in Fig. 2. The

purpose of the manifold is to uniformly distribute the flow of

oxygen. Turning vanes and slots within the LOX tee are used to

control the flow pattern. Possible fluid dynamic contributions

to the problem are: turbulence and ballcock instabilities from

the MOV (these caused major engine problems and required redesign

of earlier engines), vorticies caused by the elbow between the

MOV and the tee inlet, vortex shedding at the edges of the

turning vanes, and edge tones of the slots. Extensive

experimental studies have been conducted to understand the 4000

Hz phenomenon and the flows which contribute to it. This study

was undertaken to describe, by computational methods, the complex

flows which occur in this subsystem of the SSME.

Based on the limited experimental evidence available at the

time, NASA and Rocketdyneimplemented a modification to the LOX

tee vanes to alleviate the 4000 Hz problem. The opening between

the two vanes was enlarged, and the trailingedge of the vanes

was sharpened to Shift the frequency of the shed vortex system.

These modifications reduced the severity of the problem and are

still in use. However, the value of understanding these flows in

better detail is evident.

Detailed review_of hot fire test data revealed that the 4000

Hz oscillation was present in all engines; however, its level

!
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was much smaller in normal engines than in "buzzer" engines.

Pressure measurements indicated the oscillations to be stronger

between the MOV and LOX tee than within the LOX dome. The large

amplitude vibrations showed sharp peaks in the 3600-4000 Hz

range; the splitter vane bending and torsion natural frequency

modes are 3500 to 4500 Hz. The frequency dropped by as much as

400 Hz during firing and did not return to higher levels on

restart. The vibration occurred only during high power level

firings. Since the phenomenon did not occur on all engines, it

was assumed to be sensitive to slight geometric variations.

Water table experiments and preliminary inviscid, two-

dimensional CFD analyses have shown strong vortical flow with

smaller vortices in the wake of the vane. Geometric variations

to the vane locations had a large effect on this vortex

structure. In fact, the water table experiments can be made to

exhibit non-symmetric flow behind the vanes by displacing one

vane laterally into the flow and then returning it to its

original position. The flow thus created was bistable and

analogous to diffuser flow (Ref. 2). The significance of this

observation has not been determined. None of these studies have

shown flow oscillations typical of 4000 Hz frequency.

This study provides a three-dimensional computational fluid

dynamic analysis of the unsteady flowfield within the LOX

feedline from the MOV, the manifold tee, and the slots.

Additional detailed studies of the flowfield near the trailing

edge of two-dimensional blades were made to determine the effects

of velocity and blade shape on the unsteady character of the

flow. Such analyses were required to investigate unsteady loads

and possible mechanisms of the 4000 Hz vibration phenomenon.

Incompressible flow for liquids was treated such that real

time pressure wave speeds did not compromise the temporal
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characteristics of the wake flow. Turbulence models were

carefully selected, such that, realistic vortex structures at the

trailing edge of the turning vanes were simulated.

The computational methodology required to analyze the

unsteady flow in the LOX manifold tee will be discussed in order

to establish the critical features which must be correctly

simulated and the computation techniques which must be used to

yield good results. Appropriate verifications and meaningful

sample problem demonstrations were identified and investigated.

Details of the computer code required and the results of the

computational investigation are presented in the remainder of

this report.

APPROACH

SECA's study was directed solely toward investigating the

flowfield features which can excite the 4000 Hz vibration.

Probably the phenomenon is a fluid/structures interaction, but a

sufficiently detailed analysis of the flowfield to identify the

flow driving the vibration must treat the structure as rigid in

order to be tractable with state-of-the-art CFD methodology. To

determine an optimum solution of the problem, the source of the

oscillation must be determined. Following such a determination,

a rational decision of whether to change the structural dynamics

or the flowfield characteristics of the LOX manifold could be

made.

The objective of this study was to determine the unsteady,

three-dimensional, turbulent flow in the LOX manifold tee.

Ideally, the MOV, the high pressure duct from the MOV to the

LOX tee, the LOX tee proper, and at least a portion of the LOX

manifold should be included in the computational simulation.

!
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Treating all of these components simultaneously was found to be

impractical, therefore the three-dimensional cases analyzed were

started at the inlet to the elbow located just upstream of the

LOX tee and terminated at the slots between the LOX tee and the

LOX manifold. In fact, several very complex problems required

solution before meaningful simulations to this restricted region

of the flowfield were achieved. Restricting the flow region

under consideration, as just stated, should not greatly affect

the engineering utility of the analysis.

The flowfield analysis presented herein required that

turbulence effects introduced by vorticial flows in the elbow and

those arising from interaction with vanes, be evaluated with

respect to their possible contribution to the 4000 Hz phenomenon.

If minor geometric variations between engines is indeed the

explanation of why "buzzers" occur, vane geometry and wall

boundary conditions within the LOX tee are crucial to the

analysis.

To provide an analysis which describes the required flow

detail, a three-dimensional, unsteady, incompressible, turbulent

flowfield must be predicted. The solution must be time-accurate,

which means that pressure waves must be allowed to travel in the

analysis at the rapid sound speeds typical of the supercritical

thermodynamic conditions prevalent in the LOX tee. A

determination of a suitable flow solver was made, and its

validity was verified. In addition to time accurate pressure

predictions, boundary condition specifications must not be

allowed to introduce computational noise into the solution.

Waves adjacent to boundaries must not be produced by numerical

error in the algorithm. Proper specification of subsonic

boundary conditions was made so that such problems were not

encountered.

!
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The critical flow feature, which turbulence models and the

solution methodology must correctly predict, is the vortex-

induced vibrations from the trailing edge of the turning vane.

This places a severe restraint on the type of turbulence model

and on the grid density required.

The required simulation was performed by making an

evaluation of the CFD code to be used, evaluating the effect of

minor vane geometry variations with a two-dimensional

calculation, and finally calculating the entire 3-dimensional LOX

tee flowfield. These steps will be described in the next

sections of this report.

FLOW SOLVER SELECTION

Three concepts are available for obtaining time-accurate

solutions of the conservation equations for liquid flow. (i) A

thermal equation of state may be used to introduce the actual

wave speed for pressure pulses into the system of governing

equations. (2) An incompressible, constant density analysis may

be made whereby pressure wave speeds are treated as traveling at

infinite speeds, i.e. there is no damping due to even small

density changes. (3) Subiterations between time steps may be

used to allow artificial compressibility methods to relax to

obtain time accuracy. The approach proposed for this study was

to develop a time-accurate CFD algorithm based on a realistic

equation of state and then apply the method to the LOX tee

investigation. This development resulted in generating the LWIND

code, which is presented in Appendix A. However, before the

validation of this code was completed, two other codes became

available: INSUP2D and FDNS. INSUP2D was a modification to the

NASA/Rocketdyne INS code for incompressible flow using artificial

compressibility, which used subiterations to obtain time accuracy

(Ref. 3). The equation solved for pressure contains unsteady

!



I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

i

SECA-TR-90-02

terms and a parameter to define the artificial compressibility.

Solution of this equation is hyperbolic in nature and results in

pressure waves progressing through the computational domain

during the course of the solution. The speed of these waves

depend on the value of artificial compressibility. The FDNS code

(Appendix B) utilizes a pressure based soltuion which solves an

approximate Poisson equation for pressure. This equation

contains no unsteady terms, and its solution is elliptic like, in

that pressure waves have traveled at infinite speed throughout

the computution domain to satisfy the pressure boundary

conditions at all points on the boundary of the domain. Rather

than belabor the value and degree of approximation used, INSUP2D

and FDNS were both used to solve wake flow problems. If such

problems could be accurately solved with either or both codes,

development would be suspended on the LWIND and the more

developed codes would be used. Before this comparison is

presented, a discussion of the real fluid thermal equation for

LOX will be made.

• The LWIND Code

To describe unsteady, 3-dimensional, turbulent flow of LOX,

the interaction of pressure, density and temperature must be

accurately simulated. Utilizing the parameters: _, the

coefficient of volume expansion, and _, the isothermal

compressibility, the thermal equation of state, as derived in

Appendix A, is:

P = (_T + in p - Cp)/_

For reference conditions of pressure equal to 4000 psia,

temperature of 200 °R, and density of 69.13465 ibJft 3, the

constants: Cp, _, and _ are:

I
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Cp = 4.59672

= 1.3948E-5 (psi -I)

= 2.0823E-3 (R -I)

The values of these parameters were obtained from Ref. 4. In

general, _ and _ are not constant, but are functions of

temperature and density. However, the simplified equation of

state is useful for determining an upwind algorithm for liquid

flow which is approximately isobaric and isothermal.

The more direct approach is to determine an accurate

equation of state, such an equation was developed in Ref. 5,

based on the methods of Ref. 6. This equation is referred to as

the HBMS equation of state, it is lengthly, but explicit for

pressure as a function of density and temperature. The HBMS

equation is quite accurate for a wide range of liquid and vapor

flow conditions, including the supercritical. Although the HBMS

equation gives accurate property values, it is too complex to

incorporate into an eigenvalue solution for use as a switch in an

upwind CFD algorithm. The _,_ equation is adequate for the

latter purpose. For problems with large density and temperature

variations, the HBMS equation can be used to modify local _ and

values during the course of the computation. It should be noted

that artificial compressibility is a numerical parameter which is

unrelated to fluid properties through an equation of state. This

means that calculated pressure waves would propagate through the

medium at a finite, but arbitrary velocity, if artificial

compressibility methods were used.

• Evaluation of the INSUP2D and FDNS Codes for Wake Analyses

The incompressible, time-accurate CFD model, INSUP2D, was

investigated by comparing computed results to measured vorticial

flows, specifically, cylinders in cross-flow. Study of the time-

!



!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

SECA-TR-90-02

accurate, high order (5th, 3rd or ist) upwind INSUP2D code was

initiated with the intention of using and modifying this code for

extensive use. A test run for a steady laminar flow past a

cylinder at Re = 40 was successfully run with the artificial

compressibility set equal to 5 and _r = AT = 0.25. The

artificial compressibility is a constant parameter in the

equation which relates pressure to the divergence of the velocity

field. The residual (divmax) dropped 4 orders of magnitude in

i000 steps. Flow at this Re is steady, as was the calculated

result calculated with the unsteady code. The code changes

required to generalize the grid to other than cylindrical

geometries and to add a turbulence model were identified and

implemented. When a case is run, about half a dozen parameters

must be specified. As the case is being run, intermediate checks

are made to insure that these parameters were set at the proper

levels.

As stated previously, the laminar wake behind a circular

cylinder for Reynolds number 40 was predicted to be asymmetric by

the INSUP2D code. The built-in initial boundary disturbance in

subroutine BCIMP, used to initiate vortex shedding, rather than

the grid used, caused the asymmetry. The same case was rerun

with the initial disturbance turned off. The same steady-state

input parameters were used. A steady-state solution was obtained

in 2000 time steps. CPU time was 16 min, 16 sec. The results

show a much more symmetric wake pattern. See Figs. 3 and 4 for

stream function and pressure coefficlent contour plots,

respectively.

Experimental studies of the Re = 40 case have been presented

by Coutanceau and Bouard (Ref. 7). The parameters reported are

defined in Fig. 5 and summarized in Table i. The experiment did

not conform exactly to infinite flow around a cylinder because

the flow was contained in a large pipe, therefore the

i0
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Table I. Re = 40 Comparisons
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Parameter

D

L

a

b

imax

Xlmax

r s

CD

* from Braza, et al

Experiment

1.0

2.13

0.73

0.59

1.08

0.99

53.5 °

1.55"

)prediction

1.0

2.2

0.77

0.57

1.08

1.0

52.9 °

1.48

I

i

i

I

i

i
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investigators extrapolated their results to eliminate this

effect. Their extrapolated results were compared to several

other sets of data from the literature and found to be in good

agreement with most of the other investigations. Table 1 also

shows the results of the INSUP2D prediction; the prediction is

excellent. Experimental results at Re = i0, 15, 20 & 30 were

also reported by Coutanceau & Bouard. Qualitatively, all of

these tests produced the same closed wakes with standing

vorticies. All of the parameters could not be measured for the

lower Reynolds number cases. For Reynolds numbers lower than i,

the standing vorticies would not be expected, but such flows are

not considered to add to our understanding of the turbulent flows

in the LOX tee. Additional cases run in the range of the

referenced data should give comparisons very much like those

shown in Table i.

Cases of unsteady wake flow behind the same cylinder for Re

= 200 were also simulated using the INSUP2D code. Two cases with

and without the initial disturbance imposed were studied. The

same mesh system with grid size of i00 x 120 was used. The

physical and psuedo-time step sizes assigned were 0.025 and

1.0El0 respectively. The compressibility parameter was 2500.0,

and the fifth-order upwind scheme was used. These parameters

were suggested by Rogers and Kwak. A nearly periodic solution

was obtained after 2000 time steps (CPU time = 5 hrs, i0 min, i0

sec) when the initial disturbance was activated. This results in

a Strouhal number of 0.1942. Figs. 6 and 7 show the final stream

function plot and pressure coefficient contours. For the second

case without using the initial disturbance to generate flow

disturbances, no vortex shedding pattern was predicted after 2000

time steps. The two cases, with and without initial boundary

disturbances, were calculated until periodic solutions were

obtained. With the initial disturbances, the first case produced

a periodic solution with a Strouhal number of 0.194 in 2000 time

15
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steps. A time step of 0.025 was required and about 5 hours of

CPU time on the CRAY-XMP were used. For the second case, the

flow started to oscillate at about 2000 time steps; it took

another 2000 steps to reach a perodic solution. The overall CPU

time for the second case was 7 hrs, 39 min, 46 sec, i.e., 6.89

sec/time step. It was also found that an average of 20

subiterations were required per time step. The same Strouhal

number was obtained for both cases. Rogers & Kwak report a

Strouhal number of 0.185 for these conditions; they reference a

value of 0.194 calculated by Lecointe & Piquet. Experimental

data from Schlichting indicate a value of 0.19. The unsteady

laminar flow cases were satisfactorily predicted at Re = 200.

Reynolds number i00, 200, & i000 cases were studied

computationally with a laminar model by Braza, Chassaing, & Minh

(Ref. 8). The reported Strouhal numbers at Re = 200 was 0.2;

Roshko's experimental value was 0.194. SECA calculated a value

of 0.194 with INSUP2D. The referenced Re = I000 case indicated

that three types of eddies contributed to the wake: (i) those

associated with the separation point, (2) those associated with

the free shear layers which separate the free stream from the

wake, and (3) the classical Karman vorticies. Laminar, 2-D

calculations are only approximate in this flow regime because the

wake flow is turbulent and 3-D flow features are of importance.

Turbulence models can account for both of these effects, if they

are designed to do so. The turbulent energy spectra in the wake

of a cylinder at Re = 540 are reviewed by Hinze (Ref. 9). Braza,

et al, acknowledge the limitations of the analysis which they

present, and they point out that the relative importance of the

eddy structures change as the Reynolds number increases. It is

known that as the Reynolds number increases, a stable turbulent

wake is established with a laminar boundary layer ahead of the

separation point on the cylinder, and at further increases the

cylinder boundary layer becomes turbulent and the wake decreases
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in size (Ref. i0). Classically, the Strouhal number is based on

the observed vortex structure in the cylinder wake. Between Re =

5x10 s and 4x106, vortex structure is not experimentally observed

in the wake of cylinders (Ref. ii). All of these flow features

are quite interesting but they can not be addressed

computationally with a laminar flow analysis. The Re = 200 case

run with INSUP2D was as successful as could be expected without

using turbulence models. Other cases for Reynolds numbers up to

200 can be investigated with the original version of the INSUP2D

code, which was for laminar, 2-dimensional only. Both of these

restrictions must be removed before INSUP2D could be used to

describe the LOX tee flow.

• Addition of Turbulence Models to the INSUP2D Code

Algebraic and low-Reynolds number, k-c turbulence models

were added to INSUP2D to determine if this code could be useful

for simulating LOX tee flow.

The Baldwin-Lomax turbulence model (Ref. 12 AIAA Paper 78-

257) was incorporated into INSUP2D. The cylinder in cross-flow

was run at a Reynolds number of 106 with this turbulence model.

Streamlines and pressure coefficient contours are shown in Figs.

8 & 9. The periodicity of the solution is demonstrated with Fig.

i0 which shows the oscillation of the lift and drag coefficients.

The Strouhal number predicted for this case was 0.29, not the

0.22 expected; therefore, the Baldwin-Lomax model alone does not

predict accurate vortex shedding for cylinders. The run time for

this case was 14.5 hours.

To improve the turbulence models in INSUP2D, a major effort

was devoted to incorporating low-Reynolds number turbulence

models into the INSUP2D code. The turbulence modeling constants,

source terms, and wall damping functions of Chien's low Reynolds

19
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number two-equation turbulence model were added to the code (Ref.

13). A turbulence model control parameter, ITURB, was added for

the selection of turbulence models. The convection terms and

diffusion terms were also added to the code. Standard upwind

methods were employed to treat the convection fluxes, and a

central differencing scheme was used to approximate the diffusion

terms. These left-hand-side terms were assembled and solved in a

subroutine called STEPKE.

The basic features and performance of the eight most well

known low-Reynolds k-c turbulence models have been reviewed and

tested by Patel, et al. (Ref. 14). These turbulence models were

compared for several turbulent boundary layer flows with and

without pressure gradient effects. All of the two-equation

turbulence models considered in this study are summarized in

Table 2. No one model was consistently valid for all the cases

tested. Patel, et. al., concluded that, in general, the Chien

and Lam-Bremhorst models performed the best. Low-Reynolds number

turbulence models have not been developed to the point where they

are engineering tools, rather they are computational models which

must be carefully assessed before each application. For example,

So, et al (Ref. 15) have recently suggested an important

improvement in treating flows with pressure gradients which is

applicable to this study.

The general form of these models can be expressed by:

k t + uk_ + v_ - (Vkkx) x - (Vk_)y = Pr - E - D Eq.l

E t + uE x + vEy- (U,Ex) x - (u,Ey)y = (C1fiP r -C2f2e ) (e/k) - E

Eq. 2
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Table 2. Turbulence Models

The general form of two-equation k-E turbulence models can be
written as:

pDtk = v[(#+_Jok)vk] + p(Pr-_+D)

pDtE = V[(_+_t/o,)V£ ] + p[(E/k) (CzfIPr-C2f2E)+E)]

where the turbulent viscosity and kinetic energy production rate

are given by:

_t=pC, f,k2/_

Pr=(_Jp)[2(Ux2+Vy2+wz2)+(vx+u_)2+(wy+vz)2+(uz+Wx)2-(2/3)(Ux+Vy+Wz) 2]

D and E are defined by the following parameters:

R_ = turbulent Reynolds number = pk2/_£

= dimensionless distance from the wall = py/(k)/_

+

y = another dimensionless distance from the wall

= py./(rw/p)/;_

Also note: l=/(10vk/E)

P+= (_/p2u_3) (asP)w

u,=,/(_./p)

The turbulence model constants, C,, C I and C2, are tuned

against basic turbulent flows (e.g. homogeneous turbulence, wall

equilibrium conditions, planar and circular jets, etc.). The

turbulence Schmidt numbers, o k and oe, are determined based on the

spreading rate of k and E which satisfy the consistency condition.

The model constants and damping functions used in several

k-E models are summarized in subsequent pages of this table.
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I
Model standard

k_,_w B.C.

I C. 0.09

i C I I. 44

C 2 i. 92

o k 1.0

O, 1.3

f. I. 0

fl 1.0

f2 i. 0

I D 0.0

E 0.0

I

wall functions

extended

Chen-Kim

wall functions

0.09

1.15+0.25Min( 3 ,Pr/6 )

1.90

0.8927

1.15

1.0

1.0

1.0

0.0

0.0

Launder-

Sharma

E w = 0

0.09

1.44

1.92

1.0

1.3

exp{-3.4 (I+RT/50) -2}

1.0

i-0.3exp{-R_ 2}

-2v(a_k) _

2wv t(a_U) 2

I

I

1

I

1

1

I

I

Model

k_,c w B.C.

C,

Ci

C2

Ok

G,

f,

fl

f2

D

Hassid-

Poreh

kw= Cw=0

0.09

1.45

2.0

1.0

1.3

l-exp{-0. 0015R_}

1.0

i- 0.3 exp { -R_ 2)

-2vk/y 2

-2v (a,Jc) _

Hoffman

0.09

6 w = 0

1.81

2.0

2.0

3.0

exp{-l. 75/(I+RJ50) }

1.0

i- 0.3 exp {-R_ 2}

- (v/y) ayk

0.0

Dutoya-
Michard

kw= Ew=O

0.09

1.35

2.0

0.9

0.95

I-0.86exp{- (RJ600) 2}

i-0.04exp{-(RT/50 )2)+ (i/2y) 2

I-0.3exp (- (RT/50) 2}-0.08 (I/y) 2

-2v (a,_/k) 2

-C2f 2 (ED/k) 2
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p.2

I

I

I
I

I

I
I

I

Model:

k_,_ w B.C.

C,

Ci

C2

(Ik

oc

f.

fl

f2

D

E

Reynolds

k_=0, Ew=va_k

0.084

1.0

1.83

1.69

1.3

l-exp (-0. 0198P_ }

1.0

f,[ i-0.3exp(-RT2/9) ]

0.0

0.0

Chien Lam-

Bremhorst

Model Nagano-

k w = Ew = 0 kw=0, _w=ua_k

0.09 0.09

1.35 1.44

1.80 1.92

1.0 1.0

1.3 1.3

l-exp(-0.0115y ÷} [l-exp(-0.0165P_} ]2(I+20.5/RT)

1.0

I-0.22exp(-RT2/36 }

-2vk/y 2

i+ (0.05/f,) 3

l-exp (-R_ 2}

0.0

-2v(E/y2)exp{-0.5y +} 0.0

Lai-So-

I

I
I

I
I

I
I

I

Hishida

k_,E w B.C. k_ = cw = 0

C, 0.09

C I 1.45

C2 i. 90

ck i. 0

O c 1.3

f, [l-exp {-y+/26.5 } ]2

fl 1.0

f2 i- 0.3 exp {-R_ 2}

D -2_ (a/k) 2

E wu t (1-f,) (SnU) 2

Hwang

k_= Ew=0

0.09

1.35

1.80

1.0

1.3

l-exp{-0.0113y +(1-4.372p ÷) }

1.0

i- (2/9) exp{-R_2/36 }

-2vk/y 2

-2v (E/y 2) exp(-0.5y +}
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where

Pr = Ut[ (Uy + Vx) 2 + 2(Ux 2 + Vy 2) ], in 2 dimensions.

uk = v + vu/G k

y _ -- y + vt/G _

vt = C,f,k2/_

D, E, fl, f2 and f, are near-wall or 10w Re damping terms.

C,, ak, a,, CI, and C 2 are turbulence modeling constants.

There are basically two ways of achieving near-wall damping

among the turbulence models reviewed in Ref. 14. One group of

models utilizes the D and E terms for near-wall damping (e.g. the

Lauder-Sharma and Chien models). Others employ fl and f2 terms

in Eq. 2 to achieve the same effect (e.g. the Reynolds and Lam-

Bremhorst (LB) models). The Chien and Lam-Bremhorst turbulence

models were chosen for further study to represent the two

different methods of near-wall damping.

The source terms and near-wall damping terms of the Chien

and LB turbulence models were coded in subroutine VIST of

INSUP2D. A new subroutine called STEPKE was created to assemble

the matrix coefficients of the turbulence equations. In STEPKE,

the right-hand-side terms of Eq. 1 and 2 are first computed. The

convection terms were discretized with a first-order upwind

approximation. A second-order central scheme was employed for

all diffusion terms. Finally, the free-stream and solid-wall

boundary conditions for a flat-plate boundary layer flow and a

circular cylinder wake flow problem were coded. To solve the 2 x

2 matrix equations, two options, were provided: the original LU

line-relaxation method and a pointwise over-relaxation matrix
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method.

To determine if the numerical formulation and coding were

correct, a flat plate turbulent boundary layer was analyzed. A

measured turbulent boundary layer profile (Ref. 9) was imposed at

the upstream boundary. The computational domain extends 4

initial boundary layer thicknesses in the cross-stream direction

and 40 boundary layer thicknesses in the streamwise direction.

Results using both the Chien and Lam-Bremhorst models shown in

Figs. ii and 12 indicate similar boundary layer development.

With a grid size of 50 x 120 both models gave converged steady-

state solutions in i000 time steps. These results also show 2.31

times increase in CPU time when the turbulence models are

activated. As indicated by the results of these studies, the

incorporation of low-Re models into INSUP2D code was successful.

In order to compute boundary layer type flow problems, the

INSUP2D code was rearranged to provide the correct geometric

configuration. The conditions for boundary layer type flows are

activated by setting the periodic boundary condition flag to

false in the input data file. For the flat plate mesh system,

more grid points were clustered near the solid wall, which is

located at j = i, to provide enough grid points (around i0

points) inside the viscous sublayer (y÷,10). A subroutine for

generating the initial turbulent boundary layer profiles (at

k=kmax) was also created. It was found that the low-Reynolds

number turbulence models were very sensitive to the inlet

turbulent boundary conditions since the wall damping terms are

very sensitive functions of the turbulence quantities. As a

result, the profiles of the inlet turbulence quantities

(especially the non-measurable turbulent energy dissipation rate,

E) must be carefully selected or provided by experimental data.
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After the two low-Reynolds number turbulence models were

added to the INSUP2D code and the turbulence models were verified

to predict boundary layer flow on a flat plate at Re = 10E6,

flow about a cylinder was analyzed. A solution for pressure

contours and streamlines is shown in Fig. 13. Predicted

turbulent kinetic energy is shown in Fig. 14. The free-stream

was specified to have 1% TKE; the wake flow was found to have

more than 30%. This value is not realistic, which means that

this turbulence model requires additional tuning. Because this

computation was very slow in terms of machine time used,

developing a three-dimensional solution for the LOX tee manifold

starting with INSUP2D is not recommended and was not further

developed.

SECA's FDNS code has been used to simulate flow about a

cylinder at Re = 40 and 200, Refs. 16 and 17, respectively. The

results of these predictions are of comparable accuracy to those

just presented for the INSUP2D study, but the calculation was

made in less than i/i0 the time. Therefore, FDNS was selected

for further development to investigate wake flow behind vanes and

3-dimensional LOX tee flow.

BLADE WAKE STUDIES

To expedite the study of vane wakes required for

investigating the 4000 Hz problem, detailed two-dimensional

analyses of flows around blades typical of those in the LOX tee

were made. However, the time accuracy of such solutions was

first validated by investigating two vane geometries for which

experimental data were available. These validation cases were

studied to determine if the effects of implicit damping in the

algorithms and/or in the turbulence model overdamped the

formation of vorticies in the wake of the blades. If the

numerical flow solvers correctly predicted the vortex shedding
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! Figure 14. Turbulent Kinetic Energy Profiles for a Cylinder in
Cross-Flow with Chien's Low-Re Turbulent Model.
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frequency for these cases, more complex conditions could then be

considered.

• Vane Validation Studies

Predictions of vortex shedding characteristics of rounded

and sharp trailing edge blades were made. A second-order time-

centered finite difference Navier-Stokes flow solver (FDNS2D) was

used in this study. The flowfields around blade configurations

which were experimentally investigated by A. Haji-Haidari and C.

R. Smith (Ref. 18), were simulated. In these experiments, the

water flows, upstream of the trailing edge, are turbulent with a

Reynolds number of 32,000 (based on blade thickness and an

average velocity). Mean velocity and turbulent intensity

profiles inside the wake were measured using hot film anemometry.

Flow visualization and recording techniques utilized a hydrogen

bubble generator and a high-speed video system to determine the

vortex shedding frequencies.

Two cases with flow Reynolds numbers of 1,000 and 32,000

were numerically simulated for each blade in the present study.

For the low Reynolds number cases, the flow was assumed to be

laminar. For the high Reynolds number cases, an extended two-

equation turbulence model with wall function boundary conditions

was employed for transient turbulent flow computations. A grid

size of i01 x 73 was used. All of the 2-dimensional vane

calculations were started from a computational plane normal to

and cutting through the vane. This procedure greatly reduced the

number of grid points required for a simulation. The experiments

were performed in a duct such that bounding walls inclosed the

vane tested. These walls were used with slip boundary conditions

to bound the computation domain. In order to provide good

temporal resolution, a dimensionless time step size of 0.025

(based on blade thickness and mean velocity) was used for each
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case. Time-accurate periodic solutions were obtained in 5000

time steps for the Re = i000 laminar flow past the round trailing

edge blade starting from an initially uniform flow field. Fig.

15 (a)-(c) illustrates the solutions of velocity fields, pressure

contours and stream function contours, respectively, at the end

of 5000 time steps. An additional 3000 time steps were used to

obtain a periodic turbulent flow solution starting from the

laminar flow solution. Fig. 16 (a)-(c) shows the flowfield

solutions for the turbulent flow case. Results of these two

cases are quite similar in terms of the vortex shedding patterns

except that the strength of the vortices are stronger for the

laminar flow case. Both cases produce Strouhal numbers around

0.21. The experimental measurements for the turbulent flow case

agree with this value, indicating that the present flow solver

was time accurate.

For the sharp trailing edge cases, however, no periodic

vortex shedding patterns were predicted even at the end of 6000

time steps. Pressure oscillations near the tip of the trailing

edge indicated a very high frequency mode. This suggests that

much better grid resolution and much smaller time-step size are

required in order to accurately predict the vortex shedding at

such high frequencies. This high frequency feature for this

blade shape was also observed in the experiments (Strouhal number

= 2.16 - 6.03). Fig. 17 (a)-(c) shows the present flow field

solutions at the end of 6000 time steps.

The test case with the cylindrical trailing edge

geometrically resembles the LOX tee vane trailing edge. This

test case sheds vortices at about 1 Hz; for LOX manifold flow

conditions and assuming the same Strouhal number, the frequency

would be about II00 Hz. Higher Reynolds numbers, three-

dimensional flow effects, curvature of the vane, velocity

imbalance on either side of the vane, and/or an inadequate
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(a) Velocity Vectors.

(b) Pressure Profiles.

Figure 15. Laminar Flow over a Vane.
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Figure 15. Laminar Flow over a Vane.
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(a) Velocity VectOrs.

(b) Pressure Profiles

Figure 16. Turbulent Flow over a Vane.

36

I



! SECA-TR-90-02

!

!

(c) Streamlines.

Figure 16. Turbulent Flow over a Vane.
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(a) Velocity Vectors

o

F

(b) Pressure Profiles

(c) Streamlines.

Figure 17. Turbulent Flow Over a Vane with a Sharp Trailing

Edge.
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turbulence model might contribute to the indication of too slow

an excitation frequency being caused by the flow.

• LOX Vane Parametric Studies

Since the blade wake studies were conducted before results

of the 3-dimensional flow calculations were available, several

blade configurations with various flow conditions were studied

parametrically. These simulations were used to determine if

oscillating vorticies which could cause a 4000 Hz excitation

could be generated by non-uniform velocity fields and blade

curvature.

Two blade configurations were studied at a Reynolds number

of 106 which is representative of that found in the LOX tee. One

blade was straight; the other had the curvature of the blades in

the LOX tee. Both of these blades were computed with bounding

walls which roughly simulated those in the LOX tee. The FDNS2D

code was used for these calculations with a k-6 turbulence model.

Results for the flat blade case are shown in Fig. 18. The

predicted Strouhal number for this case was 0.3. The increased

Strouhal number was a result of the higher Reynolds number and of

the bounding side walls being closer to the blade than was the

case for the experimentally tested blade previously described.

Note this result also differs from that experimentally observed

for a cylinder for which a Strouhal number does not exist at this

Reynolds number. Three reasons are suggested for a possible

explanation of this difference: (i) the turbulence model used

might not be appropriate, (2) experimentally a time average flow

is observed, if an ensemble average were observed the vortex

structure might be present for the flow over the sphere, and/or

(3) the flow for a blade might be different than that for a

cylinder. Regardless of the reason(s) for the discrepancy, the

flows predicted with the k-c model are yielding interesting
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-0.3 I I ! I I
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(a) Pressure and Velocity Oscillations.

Instantaneous Streamline locations

(b) Streamlines.

Figure 18. Straight Blade Uniform Inlet Velocity (Re = 106 ,

_-E Model 2000 Time Steps).
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results and are as realistic as can be expected without a more

extensive turbulence data base. For this blade thickness (0.22

in) and a representative velocity (188 fps), this corresponds to

a frequency of 3.07 KHz. Such a frequency is characteristic of

the experimentally observed wake structure and the oscillating

lift coefficient, CL. The drag coefficient, CD; velocity; and

pressure (in the near wake) oscillate at twice this frequency.

This doubling of frequencies was also observed by Braza, et al

(Ref. 8).

The case with the curved blade is shown in Figs. 19 & 20.

The frequencies are essentially the same, but the amplitude of

the pressure and velocity oscillations essentially double. The

drag coefficient curve shown in Fig. 20 does not clearly indicate

a doubling of frequency; rather the curve takes a more complex

shape. Since the lift and drag coefficients are integrated

values over the blade surfaces, the blade tips may tend to

oscillate at a higher frequency than the entire blade. In the

LOX tee, different velocities are expected on either side of the

blade. Even with uniform velocity on either side of the vanes,

the pressures and velocities shown in Fig. 18 indicate

oscillations of about 3.08 kHz, which leads one to speculate that

more realistic flowfield predictions could increase these values

to the full 4 KHz in the primary mode without considering

harmonics. This strongly suggests that the 4 kHz problem might

be directly simulated with a CFD analysis.

Also notice that for the curved blade case both the blade

and the bounding walls are curved and parallel to each other,

much like the flow in the LOX tee. The experiment and analysis

reported by Ref. 19 to analyze blade flow in the SSME LOX tee was

for a curved blade in a straight walled duct. Undoubtedly, the

duct walls caused the separation which was observed in both the

experiment and the simulation. SECA does not believe that such
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flow is representative of that found in the LOX tee.

To make the 2-dimensional simulations more realistic, cases

were studied which had different velocities on either side of the

vane. Specifically, (i) flow over straight and curved blades

with mismatched velocities on either side of the blade and (2)

flow over the modified blade configuration of the SSME were

simulated.

A flat blade wake case for which the velocities on either

side of the blade vary by 20 percent, i.e. 207 fps on one side

and 169 fps on the other, was run at a Reynolds number of a

million with the FDNS code and a k-6 turbulence model. Figure 21

shows the pressure and velocity oscillations and an instantaneous

streamline plot. The apparent Strouhal number was 0.27;

pressures and velocities oscillated at twice that frequency. The

straight blade with uniform velocity at Re = 10E6 produced lift

coefficient oscillations of 3078 Hz. The straight blade with

velocity mismatch of 20% produced lift coefficient oscillations

of 2828 Hz. Complex modes of the oscillation patterns were

predicted for this case.

The curved blade flow with a 20% velocity mismatch was run

for a Re = 106 and the results are shown in Fig. 22. A

preliminary run was made at a Re = 103 to start the turbulent

flow calculation. The flow is quite different from any blade

flow that we have previously described. The velocity and

pressure oscillations appear to be of the same frequency as the

lift and drag coefficient oscillations; the near wake flow does

not resemble other flows investigated. The lateral wake

oscillations appear quite small in amplitude. The wake

oscillations occur at a frequency of about 3913 Hz. Note: This

appears to be the source of the 4000 Hz oscillation.
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The blades in the LOX tee manifold have been modified in

order to eliminate the 4000 Hz vibration problem in the SSME.

The trailing edges of the blades have been sharpened and the

opening between the two blades has been enlarged. The effect of

the sharpened trailing edge was studied with a two-dimensional

CFD analysis using FDNS2D. The grid shown in Fig. 23 was used

for this analysis. Modified vane cases are summarized in Fig.

24. Uniform flow on either side of the blade was simulated. A

Re = 103 case was run until a periodic solution was obtained,

then the Re was increased to 106 . The periodic solution is shown

in Fig. 25 for pressure contours and flow streamlines. Notice

the smoothness of the streamlines and the pressure pattern does

not indicate vortical flow; the blade shape change is performing

as expected. Pressure and velocity were monitored at a point

close to the trailing edge, point A, and were found to almost

stabilize and then begin to oscillate at a high frequency.

Although the C L and CD stabilized at about 20 units of

dimensionless time, about 60 units of time were required before

pressure and velocity became periodic. This behavior is shown in

Figs. 26 and 27. Since the amplitude of the C L and C D

oscillations were small, the pressure and velocity fluctuations

were believed to be highly localized. Plots of pressure and

velocity at points B, C, and D, located as shown in Fig. 27, are

shown in Figs. 28 - 30. These figures indicate that these

oscillations do die out very near the trailing edge.

The new trailing edge configuration was further studied by

analyzing a velocity mismatch case. Again the turbulent flow

solution was started from a periodic average Re = 103 solution.

The pressure contours and streamlines are shown in Fig. 31 for an

average Re = 106 . Some vortex structure is shown very near the

trailing edge for this case. The same temporal behavior of

pressure, velocity, CL, and C D as was found for the uniform flow

case is seen in the predictions shown in Figs. 32 and 33.
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Figure 23. Grid for Modified Blade Shape.
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The results of the new blade analyses compared to those for

the old round blade indicate that almost all of the vortical flow

in the blade wake should be removed.

The significant 2-dimensional blade wake flow analyses are

summarized in Table 3. These predictions indicate that 4000 Hz

oscillations could be predicted in the LOX manifold with this

computational model. Performing a three-dimensional analysis of

the LOX manifold using the FDNS3D code was the next step

performed in this study.

LOX TEE MANIFOLD ANALYSIS

• LOX Tee Geometry

The geometry of the LOX tee manifold from the main LOX valve

to the slots downstream of the vanes was described with

analytical expressions in preparation for creating a 3-D

computational grid for analyzing the flow in the manifold. All

of the required geometric features were quantitatively

established from system drawings and from discussions with MSFC

and Rocketdyne personnel. The analytical expressions were

incorporated into a computer code to generate the grid for the

LOX tee. The code was compiled, executed, and verified on a

microcomputer using standard FORTRAN.

Figs. 34 through 39 present various views of the geometry as

represented by a bare minimum 5940 nodes. The actual geometry

requires between i00,000 and 150,000 nodes. Fig. 34 shows the

90-degree elbow upstream of the tee. Fig. 35 shows the plane of

symmetry (Z=0 plane) and illustrates relative postions of the

elbow, the "ring" connecting the elbow and the tee, and the tee

itself. Fig. 36 shows two views of the tee with the splitter

vane. The 0.25 inch radius fillet around the top and bottom of

the vane is exaggerated due to the coarse grid. Fig. 37 shows

59

!



I

I
I

I

I
I

I
I

I

I
I

I
I

I
I

I

I
I

.,-(

0

E

,--4
,.Q

6
Z

..C

o 0 0_:--
o h c_c_

o ._ dd
d m
o
o

N

v t_c0
_cN

(]J _ OCO
rJ _eq

6
Z

..I::
:::I _
0 e,1 e,1
I,..1 e,,l e,1

•_ 66
o
o
o

N

<
O

u'3 u'_

fN _,')

66

_0_
r_-i
o0_

_cxl

o6

I._¢0
kOl_
!_0
¢x1_

I._L_

o6

kO,,_
0_0
I._ ,,:_

OU'l
t.--I t-I
cq

66

INCN

I I I I I I

6O

0

4-}
rO

O

0

-_
O

.,-4

0
O

o_

0

0

g

1,4

-_

U

In
(1)

O
O

m

I

e-t

C}
O
_Z

C_

0
0

>

o
c_

I

SECA-TR-90-02

• qJ
= =
ro _) ¢o

> = ;>
to

e

I:: _ I1)

! ! I



I
SECA-TR-90-02

i i

i E_BOu INLET

l

I

I

!

I
Figure 34. The 90 ° Elbow

I

I

I Z =¢ PLANE

I

I

I
ElbowI

ELBOW SURFACE

VA

//

Figure 35. The Plane of Symmetry

61



I

I I

I

I

SECA-TR-90-02

TEE AND VANE

X - Y View

I

I

I

I Vane Fillet

I

!

I TEE AND VANE

I

I

I

I

I

I Figure 36. LOX Tee Splitter Vane

I 62

I



!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

TEE EX ] T

Influence of Vane

on Grid

Figure 37. Exit Plane of the Tee.

63

SECA-TR-90-02

o



!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

Figure

SLOTS

38. Slots.

VIEW

64

SECA-TR-90-02



! SECA-TR±90-02

!

!

!

!

!

!

!

VIEW

!

!

!

!

!

!

!

!

VIEW

!

Figure 39. The Hot Dog - Outside View.

65

!



!

!

!

!

!

!

!

!

!

SECA-TR-90-02

the grid distribution across the exit plane of the tee. Figs. 38

and 39 show views of the tee and hotdog. For clarity, the

surface containing the slots has been removed and is shown

separately. The slots have been darkened in to highlight their

locations.

The code was transported to MSFC's CRAY computer where the

final grid was generated and verified. Half of the symmetric

geometry was modeled, with 99660 nodes. This distribution

represents a minimum number of nodes necessary to approximate the

Loxtee geometry. Stretching of the nodal distributions in all

three directions was employed in an effort to minimize the number

of nodes required.

• 3-D LOX Tee Flow

!

!

!

!

!

!

!

!

!

In order to reduce the required memory size, for a problem

requiring a large grid size, FDNS3D was reorganized. Presently,

FDNS3D can be run with 3.9 mega-words of memory on the Cray-XMP.

Since some of the metric coefficients must be calculated

repeatedly, this modification caused a two percent increase in

CPU time for every time step. However, due to the nature of the

non-iterative time marching scheme employed in the FDNS3D code,

reasonably efficient turn-around time was still realized.

Initially, computation of a 3-D laminar flow field for the

Loxtee was performed. The flow Reynolds number, based on the

inlet mean velocity and the vane thickness, was assumed to be

I000. Results of this laminar flow problem were used as an

initial flowfield for a turbulent flow case. The code ran at a

speed of 1.75E-04 sec/grid/time-step on the Cray-XMP

supercomputer which means that about 17 sec/time-step were

required for the grid size used. A nearly periodic flowfield
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solution, based on the monitoring values of velocity and pressure

downstream on the vane trailing edge, was obtained in 1250 time

steps. The preliminary results of this laminar flow study are

shown in Figs. 40 and 41 and indicate a pressure oscillation

frequency close to 4400 Hz. Figure 40 illustrates the

perspective views of an instantaneous flow pattern inside the LOX

tee geometry. It can be seen from Fig. 40(c) that a large

velocity difference on both sides of the vane was predicted.

This may have contributed to the high frequency pressure

oscillation (compared with the case of uniform flow past a vane).

The velocity profiles upstream of the vane trailing edge,

which were shown previously in the 2-D blade study to have

substantial effects on the vortex shedding frequency in the wake

of the vane, are shown in Fig. 42. Much higher flow speed was

predicted along the concave side of the vane than that on the

convex side of the vane. This effect is shown in Fig. 42 for the

velocity profiles at three vane thicknesses upstream of the

trailing edge. These velocity differences on the both sides of

the vane can create large shear stress effects on the vortex

shedding frequency in the wake. Results of this 3-D analysis can

provide useful inflow boundary conditions for a more complete 2-D

vortex shedding analyses.

The computation of a turbulent flow with Reynolds number

about one million, inside the 3-D LOX tee geometry was

accomplished. An extended two-equation turbulence model was used

in the analysis. Several modifications to the outlet and wall

boundary conditions were made in order to eliminate their

influences on the final vortex shedding predictions. First, the

outlet mass flow conservation condition was modified to let the

flow speed corrections be proportional to the flow rate in each

slot. The wall function formulation was also modified to reduce

sensitivity to the near-wall grid skewness. However, all these

modifications were not sufficient to stabilize the solution for
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Figure 40. Perspective View for the Instantaneous Flow Pattern
in the LOX Tee.
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Figure 40. Perspective View for the Instantaneous Flow Pattern

in the LOX Tee, Continued.
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this turbulent flow case. Therefore, the mesh near the cap end

was modified to reduce the grid skewness near the corner points

in the computational domain.

A new mesh system with grid size: 157 x 19 x 33, was

generated by modifying the cap end of the tee to reduce the

degree of grid skewness near that region, when this modification

was made, the turbulent flow case became very stable. Since only

a small amount of flow passed through the region at the end of

the tee, this modification should not have significent influence

on the wake flow solution downstream of the vane. An extended

two-equation turbulence model was also employed in this

investigation.

The same initial guess of the flowfield used for the laminar

flow case was utilized to start the turbulent flow computation.

The inlet turbulence intensity and turbulence length scale were

assumed to be 5 percent of inlet flow velocity and 3 percent of

the inlet duct diameter, respectively. It took 1600 time steps

before a nearly periodic solution was obtained. A non-

dimensional time step size (based on the inlet velocity and the

vane thickness) of 0.02 was used in this case.

Figs. 43(a) - (d) illustrate four flow pattern projections

for J=4, 8, II and 16 planes respectively. Large recirculation

zones on the upper surface of the tee and on the convex surface

of the vane were predicted. Except for the stronger

recirculation, the basic features of the flow were very similar

to the laminar flow solutions. The flow has gone through a sharp

turn before exiting from the downstream slots. The entire flow

structure was highly three-dimensional, as can be seen from six

cross-sectional views (I=61, 71, 81, 91, 93 and i01 planes) of

secondary flow patterns given in Figs. 44(a) - (f). Two eddies

with counter-clockwise rotation, Fig. 44(a), were formed upstream
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Figure 43. Turbulent LOX Tee Flow
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of the vane trailing edge (the vane trailing edge was located at

I=67). A strong shear layer was then generated downstream of the

vane trailing edge, Fig. 44(b). This pattern persists until a

prevailing flow through the exit slots is established, Figs.

44(c) - (f) .

The computation of a turbulent flow inside a half-domain LOX

tee geometry indicated that a periodic solution was obtained in

2400 time steps. The periodicity was based on the time history

of the integrated lift forces on the LOX tee vane. This result

showed a Strouhal number of 0.25, or an oscillation frequency of

2485 Hz. The predicted low oscillation frequency may be

attributed to the basic assumption of the present simulation that

a symmetry boundary condition was imposed along the center plane

between two vanes. This may have omitted one important feature

of the LOX tee flow; namely that a bi-stable flowfield

downstream of the vanes may exist. Experimental observations of

the water flow tests suggest that the 4000 Hz oscillations may

have originated from the vane to which the flow was attached

after a bi-stable flow pattern was established.

Three extensions of the half-plane simulation were made.

First, a complete LOX tee geometry was incorporated in the

computation. This increases the grid size to around 200,000

nodes. In order to run this problem within 4M words memory size,

a multi-zone algorithm was implemented by using the SSD device on

the Cray-XMP. Two blocks of SSD areas were used to store the

grid and flow variables of two zones. For each time step, data

for each zone were read from SSD in sequence. Solutions of each

zone were then stored back to SSD after every time integration.

This procedure was tested and found to be successful. However,

due to the necessity of doing SSD input/output, the CPU time

required for each time step has increased by a factor of 4.

78

!



!

!

!

!

!

!

SECA-TR-90-02

Three hundred time steps were completed using this method.

At the end, the flowfield was still symmetric with respect to the

symmetry plane. Figs. 45(a) - (d) show the velocity fields on 4

J-planes. The integrated forces on both vanes were also found to

be coincidental for each time step. This suggested that further

runs would not be able to produce a bi-stable flowfield. The

initial guesses of the flowfield and the outlet mass flow rate

distributions, which were symmetric at the beginning, may have

prevented the development of a bi-stable solution.

!

!

!

!

!

!

!

!

I

|

!

!

An alternative to the above approach could also be employed

to study the effect of the bi-stable flowfield on the vortex

shedding frequency. An excess mass flow can be assigned along

the symmetry plane downstream of the vane of the half-domain. It

can be assumed that the entire mass flow through the gap between

the vanes is attached to one of the vanes. This approach may

give reasonable results with more efficient computer turn-around

time. This approach was not tested, rather a fully coupled,

entire tee domain simulation was performed on the NASA/Ames Cray.

In order to have a better turn-around time in the

computation of a full 3-D turbulent flow around the LOX tee vanes

using a multizone approach, the NASA/Ames Cray-2 and Cray-YMP

supercomputers were used to carry out the calculations. The

Cray-2 and Cray-YMP computers can handle a much larger grid size

than Marshall's Cray-XMP. A two-block mesh system with a grid

size of 2 x (157 x 19 x 33) was generated using the grid

generator. This size of mesh system requires about 8 mega-words

of memory when using the FDNS code with two-equation turbulence

models. A new zonal interface routine was incorporated in the

FDNS code to provide faster data updating along the interface

without using the solid state device (SSD). This zonal interface

interpolation procedure is performed in parallel with the matrix

solver in the FDNS. This two-zone method was running at speeds
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(b) J = 8

Figure 45. LOX Tee Flowfield for a Full-Domain Calculation,
Continued.
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(c) J = ii

(d) J = 16

Figure 45. LOX Tee Flowfield for a Full-Domain Calculation,

Continued.
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of 75 sec/time-step and 25 sec/time-step on the Cray-2 and the

Cray-YMP computers respectively. These are about 3 and 9 times

faster than the case using the two-zone SSD on the Cray-XMP.

Since much better turn-around was experienced using the Cray-YMP

machine, most of the results presented here were computed using

the Cray-YMP computer. Eleven consecutive runs (a total of 1699

time steps) with a dimensionless time step size of 0.02

(normalized with the vane thickness and the average inlet

velocity) were performed. Subsequently, an additional run of 517

time steps with a dimensionless time step size of 0.01 was

completed.

With 98,439 nodes representing one-half of the flow domain

(a zonal interface is located between two vanes), the grid

resolution is considered to be coarse compared with that which

was used for the 2-D cases. It would be difficult to obtain

accurate time-resolved vortex shedding structures with the

current grid density. The main objective of this 3-D case is

therefore aimed at the general flow patterns around the LOX tee

vanes.

Figs. 46 shows the final result of the 0.02 time step case

mentioned above; the calculated lift coefficient and monitoring

values of pressure and velocity at a point inside the near-wake

of one of the vanes with respect to the normalized time are shown

in this figure. It is clear from these results that the

solutions have not yet reached a quasi-steady-state vortex

shedding pattern. This may be caused by the coarse grid in the

wake regions or by disturbances from boundary conditions imposed

along the exit boundary (which is not far away from the vane

trailing edges). However, results of this investigation have

indicated different lift forces on the two LOX tee vanes which

also indicate non-symmetric flow patterns on the downstream side

of the vanes. The same features were not found in the previous
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investigations using two-zone SSD approach on the Cray-XMP. This

phenomenon is consistent with the experimental observations in a

water flow test program. Fig. 47 and 48 illustrate several

cross-sections of the predicted flow pattern at the end of the

calculation. The predicted velocity distributions upstream of

the trailing edge of the vane indicate more attached flow along

the suction surface, in the plane shown on p. 86. Again, large

velocity differences on both sides of the vane were predicted in

this investigation. But, the velocity difference magnitudes are

less than that of the previous one-zone solution with symmetric

boundary conditions. This is also consistent with the water flow

test results and the assumption made in the calculations for 2-D

vane configurations.

In summary, based on the 2-D results, half a million grid

points would be required to resolve the vortex shedding structure

in the LOX tee. Therefore, the 200,000 grid points used for the

3-D calculation indicate only the general features of the

flowfield. These general flow features are useful for making a

more thorough 2-D vane wake analysis. Due to the near proximity

of the surface on which exit conditions are specified to the

vanes in the tee, exit boundary conditions should be further

investigated to more accurately simulate the LOX tee flow.
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! Figure 47. Velocity Vectors for the Full 3-D LOX Tee Flowfield
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Figure 47. Velocity Vectors for the Full 3-D LOX Tee Flowfield,
Continued
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CONCLUSIONS AND RECOMMENDATIONS

Based on the computational results reported herein and the

apparent success of the proposed fix to the 4000 Hz problem which

NASA and Rocketdyne are currently using, SECA offers the

following conclusions and recommendations for this investigation.

i • The FDNS CFD code was verified to be useful in analyzing

unsteady oscillating phenomena at least up to the 6 kHz

range using wall function boundary conditions and a

sufficiently dense computational grid.

• The two-dimensional blade wake investigation demonstrated

that flow disturbances at the 4000 Hz frequency level could

originate in the wake of the splitter vanes• Furthermore,

analyses of this type could be used to avoid flow conditions

and geometric configurations which might cause similar

problems in future engine designs.

. Full 3-dimensional CFD solutions for LOX tee flow were

generated• These solutions revealed the general features of

the flowfield, but current computer size and speed

limitations prevent a sufficiently detailed analysis to

identify wake fluctuation features. The general flow

features are suitable for use as boundary conditions for

detailed 2-dimensional wake analyses•

• Even though the physics simulated in a CFD solution is

correct, complex 3-dimensional problems, like the LOX tee

flow, must still be addressed by looking in detail at small,

select regions of the overall flowfield. Carefully designed

parametric CFD investigations of unsteady, internal liquid

flows can yield invaluable design information.
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APPENDIX A - LWIND

I. INTRODUCTION

This document describes LWIND, a code developed by SECA,

Inc., to provide solutions to complex liquid flow problems.

LWIND solves the Navier-Stokes equations using an equation of

state for liquids that accurately defines the liquid in the flow

regime of interest. The code currently operates in 2-D or

axisymmetric modes with options for inviscid, laminar or

turbulent flows. Both Baldw_n-Lomax and k-6 turbulence models

have been included in the code. In addition to the algorithm

d_scussed below, the code has a grid generator, a preprocessor

and a graphics package.

The following sections present the derivations of the liquid

equation of state and thermodynamic properties and the windward

algorithm employed by the code.

2. THERMODYNAMIC PROPERTIES OF LIQUIDS

This section d_scusses the derivations of the equation of

state, enthalpy and internal energy for any liquid. These

relationships are to be used in a Navier Stokes solver and,

therefore, must be consistent with the continuity, momentum and

energy equations. Namely, the density must be the inverse of the

specific volume, the internal energy and enthalpy must differ

only by P/p, and the eigenva]ues of the set of equations must

involve only the velocity and speed of sound. For instance, many

text books assume p is constant in the derivation of the equation

of state. This leads to an inconsistency between density and

specific volume which, in turn, results in inconsistencies

between internal energy and enthalpy and extraneous terms in the

eigenvalues. The following derivations result in a set of

relations for the liquid thermodynamic properties which is

consistent throughout the analysis.

2.1 Equation of State

The thermal equation of state for any fluid may be expressed

in a differential form as

dp = (_p/ST)p dT + (Sp/%P) T dP

where p is the density, P is the pressure and T is the

temperature. But, by definition

(8p/aT)p - -p_

where _ is the coefficient of volume expansion and
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(Sp/SP) T _ p_

where K is the isothermal compressibility. Substituting these

definitions into the equation of state and rearranging yields

dp/p = -_dT + KdP

It is at this point that the assumption of constant p results in

the aforementioned inconsistency. Instead, assume that _ and K

are constant over the range of interest for a given problem and

are evaluated at reference conditions Pr, Pr, and T r. Integrating
the equation of state yields

in p = -#T + KP + Cp

where Cp is a constant of integration evaluated at the reference
conditions. That is

Cp = In Pr - KPr + _Tr

For multi-component mixtures of miscible liquids the density

of the fluid is the sum of the densities of the components. Care

should be taken in the assumption of miscibility of the

components. If the components e are mixed at the same pressure

and temperature, the equation of state becomes

in p = in(- T_ + P_K_) + C

where _ = _B_, K = ZK and C is for the mixture only._' p

The static pressure is obtained directly from the equation
of state

P = (_T + ]n p - Cp)IK

If the reference conditions are judiciously chosen from

thermodynamic property data for any liquid, the above equation of

state will usually be valid over a sufficient range of pressures
and densities.

2.2 Enthalpy

The enthalpy of any fluid may be derived using the same

process. The differential form of the equation for enthalpy is

given by (Ref. Sears,Thermodymanics,p 169)

dH = (SH/ST)p dT + (SH/aP)T dP
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= CpdT + [v - T(Sv/ST)p]dP

where H is the enthalpy, v is the specific volume, and Cp is the
specific heat at constant pressure. Some mathematical

manipulation using the Chain Rule leads to

dH = [Cp - (_2vT/_)]dT - dv/g + (_/K)d(vT)

where, referring to Sears, p. 149,

Cp - (_2vT/K) = Cp - (Cp - Cv) = C v

It can be shown (Sears, p. 150) that the specific heat at

constant volume C v is independent of the specific volume v if the

pressure is a linear function of the temperature. Referring to

the equation for pressure above, _t can be seen that pressure _s

indeed linear in temperature. Therefore,

Cp - (_2vT/K) _ Cp - (_2VrT/K)

Since Cp varies little it can be assumed constant. These
relations reduce the equation for enthalpy to a form which is

easily integrated.

dH = [Cp - (_2VrT/_)]dT - dv/K + (_/_) d(vT)

Integrating the above equation yields

H = CpT - (_2VrT2/2K) - v/K + _vT/_ + C H

where C H is a constant of integration

CH _ H R - CpT r + (_2Tr2/2_Pr) + I/_p r - (_Tr/KPr)

Now the equation for enthalpy becomes

H = CaT - l/Kp + _T/_p + C H

where C a E 0.5(Cp + C v)

For multiple components the intensive enthalpies are

additive, that is

pH = Z p_H a

The enthalp¥ equation becomes

PCaT - i/_ + _T/K + pC H = _[pa(Ca)aT - I/K_ +T_o/K o + p_(CH)_]

A-3
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Comparison of the two sides of the above relation infers the

following relations for multiple componen% liquids.

pCp = _ pe(Cp)
a

pC v = Z p_ (Cv)

pC H = _ P_ (C H)

2.3 Internal Energy

The equation for internal energy may be derived using the

same method, starting with the differential form (Sears p. 148)

dE = (SE/ST)vdT + (_E/_V)TdV = C v dT + (_T/r - P)dv

Applying manipulations similar to those for enthalpy and

integrating yields

E = CpT -(_2T2/2_Pr) + (vln v - v + CpV)/_ + C E

E = CaT - I/_p + _T/_p -P/p + C E

Comparing this equation to the equation for enthalpy indicates

that relationship H = E + P/p is satisfied if CE = CH,

therefore the equation for internal energy becomes

E = CaT - l/Kp + _T/_p -P/p + C H

2.4 Speed of Sound

A relationship for the speed of sound will be required for

the eigenvalue analysis to follow. The equation for the speed of

sound is (Sears p. 155-156)

C 2 = I/pK s

where k s is the adiabatic compressibility. Denoting the ratio of

specific heats as T, the adiabatic compressibility becomes

Ks _ _/T

and the speed of sound relationship becomes

C 2 = T/PK

A-4
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2.5 Derivatives

The formulation of the Jacobian matrices in the following

section will require taking the derivatives of pressure and

enthalpy. These derivatives were derived realizing that the

partial derivatives of the independent variables with respect to

each other are zero.

2.5.1 Pressure

Starting with the relationship for pressure

P = (_T + in p - Cp)/K

the derivative of pressure with respect to e becomes

8P/Sp = C 2 - _(H T - q2)

where _ is defined as #/KpC v. Also,

aP/apu = _(-u/pCv)/_ = - _u

8P/apv = - _v

8P/8pE T =

2.5.2 Total Enthalpy

8HT/aP = [C2 _ _(HT _ q2) + HT]/p

aHT/8pu = - _u/p

aHT/8pv = - _v/p

aHT/SPT = (_ + l)/p

The relations derived in this section will be used in the

next section to provide the thermodynamic properties of the

liquid for the windward algorithm.

3. WINDWARD ALGORITHM

An explicit w_ndward algorithm using a finite volume flux

splitting technique has been developed for solving the

conservation equations for a liquid. The explicit method was

chosen because of the need to solve real time problems. Total

conservation in the integral sense is guaranteed by employing the

elemental flux integrals to form the spatial derivatives found in

the conservation equations. The viscous terms in the flow

equations are resolved using standard central differences and are

A-5
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not included in the following discussion of the derivation of the

algorithm. The energy equation is included to permit the

treatment of heat transfer or liquids with different energy
levels.

For 2-D and axisymmetric flow, the conservation equations
may be cast in the form:

Qt + Fx + Gy + a H/y = 0

Q = [p, pu, pv, PETIT

F = [pu, pu 2 + P, puv, pUHT]T

G = [pv, puv, pv 2 + P, pVHT]T

H = [pv, puv, pv 2, pVHT]T

where t is time; x & y are Cartesian coordinates; u & v are

.velocity components in the x & y directions, respectively; p Js

density; P is pressure; E T is total specific internal energy; H T
is total specific enthalpy and o = I for axisymmetric flow and a
= 0 otherwise.

The conservation equations may be transformed to local,

computational coordinates (_,n) where A_ = An = i.

(y°/J)Q t + (y_ 9)_ + (ya c)n

where :

+ aH = 0

J = _x ny- _y nx

_x = J Yn

nx=-Jy_

_y = - J x_

ny = J x_

= [p6, pug + _x P/J, pv6 + _y P/J, p6_T] T

= [p_, pu_ + _x P/J, pv_ + _y P/J, p_H_] T

= [0, O,-P/J, O] T

= (Cx/a)u + (_y/J)v

O = (nx/J)u + (ny/J)v

The vectors F and G can be locally linearized by first

A-6
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obtaining the Jacobian matrices using the formu]as

F_ = %__FQ_ = A Q_
aQ

6 n = a__GQn : B Qn
8Q

The mathematical treatment of the Jacobian matrices A and B

is identical, therefore by letting D represent A or B, n

represent _/J or q/J, and U = nxU + nyV, the D matrix becomes

m _.

m

0 n x ny 0

-uU + nx82 U + (1-a)un x Uny - avn x _n x

-vU + ny82 vn x - aUny U + (l-a)Vny any

U(82 - HT) HTn x - _uU HTny - _vU (1+a)U

where

82 = 8P/Sp = C 2

q2 = u 2 + v 2

_ a(HT _ q2)

The D matrix can been shown to be equivalent to the

corresponding matrix for an ideal gas by noting that, for an

ideal gas

a = _ - i

= lIT

K = I/P

0 2 = 0.5(T - l)q 2.

The eigenvalues for the matrix D are obtained by setting the

determinant of D to zero and solving for the roots. The

eigenvalues are equivalent to those for gases, namely

7 = [U, U, U + nC, U - nC]

where n = (nx2 + ny2) 0"5

The eigenvector matrix for D is obtained by solving the

following relationship for each of the four eigenvalues.

A-7
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(D - 2 )Qn = 0

In expanded form the above relationship becomes

'2 n x ny

-uU+nx82 U+(l-_)Unx-2 Uny-_Vny

-vU+ny02 Vnx-_Uny U+(l-_)vny-2
#

U(O2-H T) HTnx-_UU HTny-_VU

The resultant eigenvector matrix is

0

_n x

any

(l+_)U-;,

Qn = o

M D =

1 0 1 1

u ny m I m 4

v -n x m 2 m5

q2-e2/_ -V m 3 m 6

where V = nxV - nyU

m I = u + nxC/n

m 2 = v + nyC/n

m 3 = H T + UC/n

m 4 = u - nxC/n

m 5 = v - nyC/n

m 6 = H T - UC/n

and C is the speed of sound. The determinant of the elgenvector
martix is

IMDI = 2 C 3 n/_

The inverse of M D _s obtained using the standard formula

MD -I = M_il IM D)

A-8
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where Mij = (-1)i+Jcij and cjj are the minors of M D. Then

MD-I = (_IC 2)

HT-q2

VC2/_n 2

(82-UC/n)/2_

(82+UC/n)/2_

u v -I

nyC2/_n 2 -nxC2/_n 2 0

(nxC/_n-u)/2 (nyC/_n-v)/2 I/2

-(nxC/_n+u)/2 -(nyC/_n+v)/2 1/2

It has been verified that MDMD -I is equal to the identity matrix.

The matrix D may be spectrally decomposed into components

corresponding to each of the eigenvalues by using the spectral

theorem. Since two of the eigenvalues are identical the

decomposition results in only three components. These components

are obtained by performing the following matrix multiplications

I1 II I1
1 0 0

D = M D U I + (U+nC) 0 + (U-nC) 0 M D
0 1 0

0 0 I

or

D = D 1 + D 2 + D 3

D 1 = (_ U/C 2 ) x

(C2-82)/e{

(nxUC2/n2-u82)/_

(nyUC2/n2-v82)/a

(U2C2/n2-02HT)/_

where _ = q2 _ 82/_

u v -i

u2+ny2C2/_n2 uv-nxnyC2/_n2 -u

uv-nxnyC2/_n2 v2+nx2C2/an2 -v

uw-nyVC2/_n 2 v_+nxVC2/_n2 -w

-I

A-9
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D 2 = a(U+nC)/2C 2

WI W 2

Wlm I W2m 1

Wlm 2 W2m 2

Wlm3 W2m 3

W 3

W3m I

W3m 2

W3m 3

m 1

m 2

m3

where W I = (82 _ UC/n)/_

W 2 = (nxC/_n- u)

W 3 = (nyC/an - v)

D 3 = _(U-nC)/2C 2

where

W 4 W 5 W 6 I

W4m 4 W5m 4 W6m 4 m 4

W4m 5 W5m 5 W6m 5 m 5

W4m 6 W5m 6 W6m 6 m 6

W 4 = (82 + UC/n)/_

W 5 =-(nxC/_n + u)

W 6 = -(nyC/an + v)

The quantity DQ n now becomes (D 1 + D 2 + D3)Qn where D 1 has eigen

direction U, D 2 has eigen d_rect_on U + nC and D 3 has eigen

direction U - nC. Recall that DQn represents e_ther

_'_" = (_'1) _' + (_'2) _' + (_'3) _'

or (3r_ = (G1)_ + (G2)F/ + ((33)_7

The components DI, D 2 and D 3 may be simplified by applying

the chain rule to replace derivatives of (PET) w_th derivatives

of P. The equation for the differential form of the internal

energy, dE, from section 2.3 may be expanded to the differential

of the total energy, dET, to give

dE T = CvdT - (_T/K - P)dp/p 2 +qdq

A-l 0



!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

SECA-TR-90-02

But

dT = _dP/_ - dp/_p

d(PET) = pdE T + ETdP

d(pq) = pdq + qdp

Combining the above four relations yields

d(PET) = dP/_ - 82dp/_ + ud(pu) + vd(pv)

Substituting the above equation into the three components of D

eliminates many of the terms in the matrices. Another

simplification involves using the chain rule to replace (PU)n and

(pv)_ with (pU) n and (pV) n . These two operations reduce the
complicated component matrices into much more simplified forms,

namely:

DiQ n = D*_Q*n, where Q* = [p, pU, pv, p]T and

D*: = U

] 0 0 -:/C 2

nxU/n 2 0 -ny/n 2 -u/C 2

nyU/n 2 0 nx/n 2 -v/C 2

U2/n2-82/a 0 V/n 2 -_/C 2

D* 2 = U+nC
2nC

-U 1 O n/C

-Um I ml 0 mln/C

-Um 2 m 2 0 m2n/C

-Um 3 m 3 0 m3n/C

D* 3 = U-nC
2nC

n

U -i 0 n/C

Um 4 -m 4 0 m4n/

Um 5 -m 5 0 msn/C

Um 6 -m 6 0 m6n/C

A-:l:
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D*_Q* can be expanded by noting thatn

(pU) n = (PU)n

(pUU)n = -uUp n + (u + nxU/n2)(PU)n - (nyU/n2)(PV)n

(pvU) n = -vUp n + (v + nyU/n2)(pU) n + (nxU/n2)(PV)n

(pUHT) n = -U(H T + 82/_)p n + (H T + U2/n2)(PU)n

+ (UV/n2)(pV) n + U(_ + l)Pn/_

Substituting the above relations into D* *1Q I puts the actual
fluxes back into the algorithm. The algorithm then becomes the

fluxes plus biases in the windward directions D*IQ* becomes• n

m •
1Q I = Fn +[UPn-(PU)n] a 1

a 2

a 3

-nPn/C2

u -'-I

U/n I
I

bl I
I

b 2 _
I

b 3 I

where F n is either of the original flux vectors, F or G , and

a I = u + nxU/n 2

a 2 = v + nyU/n 2

a 3 = H T + U2/n 2

b I = (uU + nxC2)/n

b 2 = (vU + nyC2)/n

b 3 = U(H T +C2)/n

Defining several convenient groupings of parameters

m --1

i l

!

fl = [UPn- (PU)n] al I

a2 I
I

aa !

f2 = nPn/C2 bll

b2 I

b3 I
m ---.

A_2
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f3 = [UPn- (PU)n]/C

m R

U/n

b 1

b 2

b 3

m

1

f4 = nPn/C al

a 2

a 3

then D*IQ'n = (F1)n = Fn + fl - f2

D_2Q_n and D_3Q_n can also be expanded to yield

D*2Q'n = (F2)n = 0.5(f2 - fl) + 0.5(f4 - f3)

D*3Q*n = (F3)n = 0.5(f2 - fl) - 0.5(f4 - f3)

Again the eigen directions of FI, F 2 and F 3 are U, U + nC
and U - nC, respectively.

Once the flux components have been evaluated, the windward

algorithm determines which nodes in the element receive each of

the flux components. The windward algorithm ls stated as:

F n = el(Fl) n + e2(F2) n + e3(F3) n

where: e I = i if U > 0

=OifU<0

e 2 = I if U + nC > 0

= 0 _f U + nC < 0

e 3 = I if U - nC > 0

0 if U - nC < 0

For supersonic flow, which is unlikely for liquid flows, e I = e2

= e 3 , so that

Fn = el( FI + F2 + F3 )n

= el[ F + fl - f2 + 0.5 (f2 - fl + f4 - f3)

+ 0.5 (f2 -fl - f4 + f3)]

= elF = el(F) n

For subsonic flow where U < nC the e's may be redefined as:

A-13
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e I = 0.5(i + _i), where 81 = SIGN(U)

e 2 = 0.5(I + _2), where 62 = SIGN(U+nC) = SIGN(n)

e 3 = 0.5(i + _3), where _3 = SIGN(U-nC) = SIGN(-n) = - 62

In subsonic flow any node in the flow grid will have either e 2 or

e 3 equal to unity and the other equal to zero, therefore for any
node

F n = 0.5[(I+_I)F + _l(fl-f2) + 62(f4-f3)]

By simply evaluating the signs on U for supersonic flow and for U

and n for subsonic flow the algorithm automatically determines

the proper directions in which to difference the three components

of the flux vectors. The method by which the differencing is

accomplished in LWIND is described below.

LWIND employs a numbering system convention which applies to

each element in the flow field regardless of orientation. This

numbering system is detailed below.

Typical Element

D

4 C 3

1 _ A 2

Nodes: I - 4

Faces: A - D

Elements do not need to be

rectangles; sketch indicates

numbering system only.

The position vector for any point _n the element is P = [x, y]T
or

P = (I-{)(I-w)PI + _(I-_)P2 + {wP3 + (I-_)_P4

P{ = (1-n)(P2 - el) + _(P3 - P4)

P_ = (I-_)(P4 - Pl ) + _(P3 - P2 )

IA: = x_ y_ - x_ y_ = 1/J

In order to understand the physical lnterpretation of the

equations used in the algorithm, first note that the outward-

pointing norma]s

A-I 4
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on each face of the element are:

Face N x _Ny

A Y2-YI Xl -x2

B Y3-Y2 x2-x3

C Y4 -Y3 x3-x4

D Yl -Y4 x4 -xl

Evaluation of the derivatives PC and Pn at each node of the
element yields

Node x_ y_ x_ yw

1 x2-x 1

x2-x 1

x3-x 4

x3-x 4

Y2-Yl

Y2-Yl

Y3-Y4

Y3-Y4

x4-x 1

x3-x 2

x3-x 2

x4-x I

Y4-Yl

Y3-Y2

Y3-Y2

Y4-Yl

But from before

_x = J Y_

_y = - J x_

so that

!

!

!

Node _x

- J1 NxD

J2 NxB

J3 NxB

- J 4 NxD

_y

- Jl NyD

J2 NyB

J3 NyB

- J4 NyD

_x

- Jl NxA

- J2 NxA

J3 NxC

J4 Nxc

ny

- Jl NyA

- J2 NyA

J3 Nyc

J4 Nyc

!

!
A-15



I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

SECA-TR-90-02

Therefore v_/J and v_IJ are area normals at the 2 faces

associated wdth each node in the positive _ and _ directions. U

is the dot product of the velocity vector and the area normal

vector. Consequently, the local computational coordinate form of

the conservation equations represents the fluxes through the

faces of the element and are, in fact, identical to the flux

integral form of the conservation equations. LWIND departs from

standard finite difference methods at this point by employing the

integral form of the equations and actually integrating the

fluxes through each element. This results in a finite volume

integral approach using a windward algorithm.

The above table reveals that _x and _v involve only the

normals on faces B and D of the t_....cal el_ment while _x and _y
only involve the normals on faces A and C. Consequently,

is evaluated only on faces B and D while G is evaluated only on
faces A and C.

The adopted convention for the typical element, with its

numbering system for the nodes and faces relative to the _ and

directions, dictates the following for 62 = SIGN(n). The outward-

pointing normal for face B points in the direction of positive

while the outward-pointing normal for face D points in the

negative _ direction. Therefore,

62 = I for nodes 2 & 3 for F_

= -i for nodes 1 & 4 for F_

Likewise, the outward-pointing normal directions for faces A and

C dictate that

62 = I for nodes 3 & 4 for n

= -I for nodes I & 2 for

If U a is defined as the average U _n e_ther the _ or

direction, recalling that U is the dot product of the velocity

and area normal vectors, then, since the area normal vectors on

opposite faces have opposite signs, the following is true:

= SIGN(Ua) for nodes 2 & 3 for FC

= -SIGN(Ua) for nodes I & 4 for F{

= SIGN(Ua) for nodes 3 & 4 for G_61

= -SIGN(Ua) for nodes I & 2 for G_

Applying the above conventions for _I and 62 to the equation for

F n and noting that each node on a face receives half of F n

A-16
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yields:

For nodes 2 & 3 (for F_) or nodes 3 & 4 (for

F + = 0.25[(i + ¢I)F + el(f I - f2) + (f4 - f3)]

For the opposite nodes,

F-= 0.25[(I - ¢I)F- ¢l(fl - f2) - (f4 - f3)]

or

where

F ± = 0.25[(I ! ¢I)F ± ¢l(fl

= 0.25F n ± 0.25(_IF n + B]

- f2) ± (f4- f3)]

B = ¢l(fl - f2) + (f4 - f3)

The flux equation consists of a center differenced term involving

F_ or GD only and a blas term B which ls windward differenced but
sums to zero over the element, thus ensuring the integral

conservation of the flow equations over the element.

The bias term B can be simplified using the following

groupings of parameters:

b I = ¢iC - U/n

b 2 = ¢iU/n - C

b 3 = [Up n - (PU)n]b I/C - nPnb2/C2

b 4 = [Up n - (PU)n]b 2 -nPnbl/C

S ___.

b 3

b3u + b4nx/n

bsv + b4ny/n

b3H T + b4U/n '

Then

The above derlvatlon results in a finite volume, totally

conservative, windward algorithm consisting of center differenced

fluxes with a windward bias involving no time-consuming matrix

multiplications.

A-I 7'
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Appendix B - FDNS

The Navier Stokes conservation equations to be solved, along
with k-E turbulence model equations, are given below in
curvilinear coordinates.

j-1(apq/at) = a[-puiq + #Gij(Sq/a_j)]/a_i + Sq

where U i = i, u, v, w, h, k, and E, respectively, for mass,

momentum, enthalpy, turbulent kinetic energy, and turbulent

kinetic energy dissipation conservation. J, Ul, and Gij are given

by

J = _((,_,[)/a(x,y,z)

U i = (uj/J) (8_i/Sxj)

Gia = (a_i/axk) (a(j/axk)/J

Also, # = (#I + #_)/aq is the effective viscosity when the
turbulent eddy viscosity is used to model turbulent flows. The

turbulent eddy viscosity is #t = pc,kz/c; C, and aq are turbulent

modeling constants. Wall functions are used to reduce the number

of grid points required very near no-slip walls.

The source terms are given by:

Sq = j-1

0

-p. + V[#(us)x]

-py + V[#(uj)y]

-Pz + V[_(uj).]

¢

p(P= - _)

(p_/k) (CIP= - C2_ + C3P=Z/c)

An upwind scheme is used to approximate the convective terms
of the momentum, energy, and continuity equations; the scheme is
based on second and fourth order central differencing with

artificial dissipation. First order upwinding is used for the

turbulence equations since the parameters involved are all

positive quantities. Different eigenvalues are used for weighing

the dissipation terms depending on the conserved quantity being

evaluated, in order to give correct diffusion fluxes near wall

B-I
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boundaries (Ref. BI). This procedure is differenL 1_u_, _,,_

proposed by other investigators (Refs. B2 - B4) in which the sum

of the absolute value of the convective velocity and the local

sound speed is used to weigh the dissipation terms. For

simplicity, consider fluxes in the {-direction only. That is:

aF/a_ = 0.5(Fi+1 - Fil) - (di+I/z - di_I/z)

A general form of the dissipation term is given as follows.

di+i/2 = 0.5[E_Ipul]_+112(qi,1-qi) + [£2(I-EI) _x(0.5_sp(lul,lvl),

21pUI) + E3AS]i+112(qi-1 - 3qi + 3qi+1 - qi+2)

where: d I = REC (upwinding control parameter) and d 3 = 0.005

Different values for El, E2, and E3 are used for the continuity,

energy and momentum equations, as shown in Table i.

El

E2

E3

Table I. Dissipation Parameters

Momentum & Energy Continuity

d I 0
0.015 0

0 d3

To maintain time accuracy, a time-centered, time-marching

scheme with a multiple pressure corrector algorithm is employed.

In general, a noniterative time-marching scheme is used for time

dependent flow computations; however, pressure corrector

subiterations can be used if necessary. The pressure corrector

scheme is described as follows. A simplified momentum equation

was combined with the continuity equation to form a pressure

correction equation. This equation is:

apu_/at = - vp,

or in discrete form:

u i, = - p(At/p)Vp' (1)

where @ represents a pressure relaxation parameter (_ = i0 is

typical). The velocity field in the continuity equation is then

perturbed to form a correction equation. That is:

v(pu_) _+_ = v[p_(u_ _ + u_')] = 0

or,

B-2
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v(pui') = - v(pui)n

Substituting equation (I) into (2), the following pressure

correction equation is obtained.

- v(_nt vp') =- v(pui) n (3)

Once the solution of equation (3) is obtained, the velocity field

and the pressure field are updated through equation (i) and the

following relation:

pn+1 = pn + p,

To ensure that the updated velocity and pressure fields satisfy

the continuity equation, the pressure correction procedure is

repeated several times (usually 4 times is sufficient) before

marching to the next time step. This constitutes a multi-

corrector subiteration procedure.

For the description of cavitating flow, an additional

conservation equation for the gas phase is required. This

equation contains a source term, pWt, which is evaluated as

follows: Derivation of the bubble growth rate two-phase model

follows the method given in (Ref. B5), the basic equations used

in this model are the Clausius-Clapeyron equation and the

simplified one-dimensional momentum and energy equations. The

final expression can be written as:

dm/dp = (vf_/hf_) (m - CT/hf_)

where m, p, v, h, C and T represent the mass fraction (or

quality) of the bubbly phase, pressure, specific volume,

enthalpy, specific heat and fluid temperature respectively. The

subscript f, denotes differences due to phase change.

The rate of production of heterogeneous nuclei per unit

volume as proposed in (Ref. B6) is:

dn/dt = Nn(2O/MTr )0"5 exp[_(167ro36/3,_T)/(p_ _ pf)2]

where: Nn, number of heterogeneous nucleation sites per unit

volume;

o, surface tension of oxygen;

M, mass of a mulecule;

_, Boltzmann's Constant;

6, function of bubble contact angle. (assumed to be

unity in this study);

B-3
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p_; vapor pressure at temperature, T; anu

p_; fluid pressure.

By combining these equations, an expression for the bubble

growth rate results:

dr/dt = [K_R2Tf2/hf2p2(3Kt/_)05] (p2/p_r) in(p_/p_r)

where: Kf, thermal conductivity of fluid;

K, thermal diffusivity of fluid;

Per, pressure inside a bubble of radius, r;

R, gas constant.

Finally, the source term for the mass fraction equation can

be written as:

pW t = p,(l-_) (4_/3) (U/As)(dn/dt) (dr/dt) 3

where s is an average cell size and the volume fraction, a, can

be calculated from the following homogeneous relation:

= m(p_/p,)/[l + _(p_/p,- I)]
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